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Outline 

•  Introduction 

•  DCM neuronal model 

•  DCM hemodynamic model 

•  Canonical example 

•  Recent DCM developments 
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Different levels 
for the study of brain processes 
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BASICS OF DCM 
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Effective connectivity 
Generative models 

Forward problem 
Given the generative model, one can predict the measured data 

Inverse problem 
Given the measured data, one can estimate the generative model 
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DCM 
Evolution and observation mappings 

neural states dynamics 

Electromagnetic 
observation model: 
spatial convolution 

•  simple neuronal model 
•  realistic observation model 

•  realistic neuronal model 
•  simple observation model 

fMRI EEG/MEG 

inputs 

Hemodynamic 
observation model: 
temporal convolution 
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•  DCM allows us  
–  To look at how areas within a network interact 
–  To investigate functional integration & modulation of 

specific cortical pathways 
•  Temporal dependency of activity within and between 

areas (causality) 

Basics of DCM 

inputs 
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Seed voxel approach, PPI etc.  Dynamic Causal Models 

timeseries (neuronal activity) 

Temporal dependence and  
causal relations 
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•  DCM allows us  
–  To look at how areas within a network interact 
–  To investigate functional integration & modulation of 

specific cortical pathways 
•  Temporal dependency of activity within and between areas 

(causality) 
•  Separate neuronal activity from observed BOLD 

responses 

Basics of DCM 

inputs 
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•  Cognitive system is modelled at its 
underlying neuronal level (not directly 
accessible for fMRI) 

•  The modelled neuronal dynamics (Z) are 
transformed into area-specific BOLD 
signals (y) by a hemodynamic model (λ) 

λ 

Z 

y 
The aim of DCM is to estimate 
parameters at the neuronal level such 
that the modelled and measured 
BOLD signals are optimally similar. 

Basics of DCM:  
Neuronal and BOLD level 
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NEURONAL MODEL 
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•  A system is a set of 
elements zn(t) which 
interact in a spatially and 
temporally specific fashion 

•  State changes of the 
system states are 
dependent on: 
–  the current state z 
–  external inputs u 
–  its connectivity θ 
–  time constants & delays 

Input u(t) 

connectivity parameters θ 

system 
z(t) state  

Neuronal systems are represented 
by differential equations 



Olivier David – 25/09/2013 – Grenoble Brain Connectivity Course 

Half-life τ 

Generic solution to the ODEs in DCM: 

z1 

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 
0.2 
0.4 
0.6 
0.8 
1 

Decay function 

DCM parameters = rate constants 
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Generic solution to the ODEs in DCM: 

z1 

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 
0.2 
0.4 
0.6 
0.8 
1 

Decay function 

If AB is 0.10 s-1 this 
means that, per unit time, 
the increase in activity in 
B corresponds to 10% of 
the activity in A 

0.10 

DCM parameters = rate constants 
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z2 

z1 

z1 sa21t z2 

Linear dynamics 
2 nodes 
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Neurodynamics 
2 nodes with input 

u2 

u1 

z1 

z2 

activity in z2 is coupled to z1 via coefficient a21 

u1 

z1 

z2 
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Neurodynamics 
Positive modulation 

u2 

u1 

z1 

z2 

activity in z2 is coupled to z1 via coefficient a21 

u1 

z1 

z2 

u2 

€ 

b21
2
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reciprocal connection 
disclosed by u2  

Neurodynamics 
Reciprocal connections 

u2 

u1 

z1 

z2 

contextual modulation through coefficient b2
21 

u1 

z1 

z2 

u2 

€ 

b21
2

€ 

a12
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Bilinear state equation 
in DCM for fMRI 

state  
changes connectivity 

external 
inputs 

state 
vector 

direct  
inputs 

modulation of 
connectivity 

n regions  m drv inputs m mod inputs 
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HEMODYNAMIC MODEL 
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LFP/BOLD 
Standard biophysical model 

Arthurs & Boniface, TINS, 2000 
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LFP/BOLD 
Standard biophysical model 

fMRI 

CBV, CBF, 
BOLD 

Neuronal 
activity 

Hemodynamic 
filter 
(HRF) 

Prediction 

LFP 

General Linear Model 
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DCM hemodynamic model 

experimentally controlled 
stimulus 

u t 
neural states dynamics 

Balloon model 

hemodynamic 
states dynamics 

BOLD signal change 
observation 
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DCM hemodynamic model 

0 

Neuronal 
activity 

z 
s 

f 
v 

q 

y 
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Haemodynamics 
Reciprocal connections 

blue:     neuronal activity 
red:       bold response 

h1 

h2 

u1 

u2 z1 

z2 

h(u,θ) represents the BOLD 
response (balloon model) to input  

BOLD 
(without noise) 

BOLD 
(without noise) 
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Haemodynamics 
Reciprocal connections 

blue:     neuronal activity 
red:       bold response 

h1 

h2 

u1 

u2 z1 

z2 

BOLD 
(noise added) 

BOLD 
(noise added) 

y represents simulated 
observation of BOLD 

response, i.e. includes noise 



Olivier David – 25/09/2013 – Grenoble Brain Connectivity Course 

BOLD 
y 

y 

y 

haemodynamic 
model 

Input 
u(t) 

activity 
z2(t) 

activity 
z1(t) 

activity 
z3(t) 

effective connectivity 

direct inputs 

modulation of 
connectivity 

The bilinear model 

c1 

b23 

a12 

neuronal 
states 

λ 

z 

y 

integration 

Neuronal state equation 

Friston et al., NeuroImage, 2003 

Conceptual overview 
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fMRI data 

Posterior densities  
of parameters 

Neuronal  
dynamics Hemodynamics 

Model  
selection 

DCM roadmap 

Model inversion  
using 

Expectation-maximization 

State space  
Model 

Priors 
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Constraints on 
• Haemodynamic parameters 

• Connections 

Models of 
• Haemodynamics in a single region 

• Neuronal interactions 

Bayesian estimation 
posterior 

prior likelihood term 

Estimation: Bayesian framework 



Olivier David – 25/09/2013 – Grenoble Brain Connectivity Course 

Forward coupling, a21 

Input coupling, c1 

Prior density         Posterior density      true values            

Parameter estimation: an example 

u1 

z1 

z2 

Simulated response 
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Model comparison 

•  Which model is the best among a set of competing 
models? 
–  Model evidence: 

models 

p(y|mi) 

1 2 3 

m1 m2 m3 

Penny et al., NeuroImage, 2004; PLoS Comp Biol, 2010 
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Testing neuropsychological models 
using DCM 

Competing 
functional 

hypotheses 

Translation 
in neuronal 

terms 

Model comparison 

Most likely functional hypothesis 

Tuning of 
models 



Olivier David – 25/09/2013 – Grenoble Brain Connectivity Course 

CANONICAL EXAMPLE 
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V1 

V5 

SPC 
Photic 

Motion 

Time [s] 

Attention 

    This models is used to assess the site of attention 
modulation during visual motion processing in an 
fMRI paradigm reported by Büchel & Friston. 

Friston et al., NeuroImage, 2003 

-  fixation only    
-  observe static dots  + photic    V1   
-  observe moving dots + motion    V5 
-  task on moving dots  + attention   V5 + parietal cortex 

? 

Example 
Attention to motion in the visual system 
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V1 

V5 

SPC 

Motion 

Photic 

Attention 

0.85 

0.57 -0.02 

1.36 
0.70 

0.84 

0.23 

Model 1: 
attentional modulation  
of V1→V5 

V1 

V5 

SPC 

Motion 

Photic Attention 

0.86 

0.56 -0.02 

1.42 

0.55 
0.75 

0.89 

Model 2: 
attentional modulation  
of SPC→V5 

Bayesian model selection:  Model 1 better than model 2 

→ Decision for model 1:    in this experiment, attention  
         primarily modulates V1→V5 

Comparison of two simple models 
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WHAT ABOUT 
HEMODYNAMIC 
PARAMETERS? 
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Studying neurovascular coupling 
with DCM  

•  Hemodynamics of the epileptic focus in the GAERS 
model of absence epilepsy 

David et al., PLoS Biol, 2008 

Why such difference of hemodynamics? 
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Studying neurovascular coupling 
with DCM  

•  Canonical: γ=0.41     Thalamus: γ=0.31     S1: γ=0.03 
•  Deregulation of CBF feedback on vasodilation 

–  Underexpression of NO by astrocytes in the epileptic focus? 
David et al., PLoS Biol, 2008 

CBV 
signal y 

Synaptic 
activity x 

•  DCM performs a biologically informed HRF deconvolution and 
estimates hemodynamical parameters for each ROI 
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RECENT DCM EXTENSIONS 
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Factorial structure of model 
specification in DCM10 (SPM8) 

•  Three dimensions of model specification: 
–  bilinear vs. nonlinear 
–  single-state vs. two-state (per region) 
–  deterministic vs. stochastic 

•  Specification via GUI.  
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bilinear DCM 

Bilinear state equation: 

driving  
input 

modulation 

driving  
input 

modulation 
non-linear DCM 

Nonlinear state equation: 

Bilinear vs. nonlinear 

Stephan et al., NeuroImage, 2008 
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input 

Single-state DCM 

Intrinsic (within-
region) coupling 

Extrinsic (between-
region) coupling 
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Two-state DCM 
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Single-state vs. two-state DCMs 

Marreiros et al., NeuroImage, 2008 
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Estimates of hidden causes and states 
(Generalised filtering) 

•  all states are represented in generalised 
coordinates of motion 

•  random state fluctuations w(x) account 
for endogenous fluctuations, 
have unknown precision and 
smoothness  
→ two hyperparameters 

•  fluctuations w(v) induce uncertainty about 
how inputs influence neuronal activity 

•  can be fitted to resting state data 

Stochastic DCM 

Li et al., NeuroImage, 20011 
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CONCLUSION 
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Conclusion 
Planning a compatible DCM study 

•  Suitable experimental design: 
–  any design that is suitable for a GLM  
–  preferably multi-factorial (e.g. 2 x 2) 

•  e.g. one factor that varies the driving (sensory) input 
•  and one factor that varies the modulatory input 

•     Hypothesis and model: 
–  define specific a priori hypothesis 
–  which models are relevant to test this hypothesis? 
–  check existence of effect on data features of interest 


