

Dynamic Causal Modelling for fMRI

Olivier David, PhD

Brain Function and Neuromodulation, Joseph Fourier University Olivier.David@inserm.fr

Grenoble Brain Connectivity Course

- Introduction
- DCM neuronal model
- DCM hemodynamic model
- Canonical example
- Recent DCM developments

Different levels for the study of brain processes

Effective connectivity Generative models

DCM Evolution and observation mappings

Basics of DCM

• DCM allows us

- To look at how areas within a network interact
- To investigate functional integration & modulation of specific cortical pathways
 - Temporal dependency of activity within and between areas (causality)

Temporal dependence and causal relations

Seed voxel approach, PPI etc.

Dynamic Causal Models

timeseries (neuronal activity)

Basics of DCM

• DCM allows us

- To look at how areas within a network interact
- To investigate functional integration & modulation of specific cortical pathways
 - Temporal dependency of activity within and between areas (causality)
 - Separate neuronal activity from observed BOLD responses

Basics of DCM: Neuronal and BOLD level

- Cognitive system is modelled at its underlying neuronal level (not directly accessible for fMRI)
- The modelled neuronal dynamics (Z) are transformed into area-specific BOLD signals (y) by a hemodynamic model (λ)

The aim of DCM is to estimate parameters at the neuronal level such that the modelled and measured BOLD signals are optimally similar.

Neuronal systems are represented by differential equations

- A system is a set of elements z_n(t) which interact in a spatially and temporally specific fashion
- State changes of the system states are dependent on:
 - the current state z
 - external inputs u
 - its connectivity θ
 - time constants & delays

dZ $F'(z, u, \theta)$ *]*+

Generic solution to the ODEs in DCM:

$$\int_{z_{1}}^{s} \frac{dz_{1}}{dt} = -sz_{1}$$

$$\int_{z_{1}(\tau)}^{z} z_{1}(t) = z_{1}(0) \exp(-st), \quad z_{1}(0) = 1$$

$$\int_{z_{1}(\tau)}^{z} z_{1}(0) \exp(-s\tau)$$

$$\int_{z_{1}(0)}^{z} s = \ln 2/\tau$$

$$\int_{z_{1}(0)}^{z} s = \ln 2/\tau$$

$$\int_{z_{1}(0)}^{z} z_{1}(0) \exp(-s\tau)$$

a

Generic solution to the ODEs in DCM:

A 0.10 B If $A \rightarrow B$ is 0.10 s⁻¹ this means that, per unit time, the increase in activity in B corresponds to 10% of the activity in A

Linear dynamics 2 nodes

 $z_1(t) = \exp(-st)$ $z_2(t) = sa_{21}t \exp(-st)$

 $a_{21} > 0$

Neurodynamics 2 nodes with input

$$\begin{bmatrix} \dot{z}_1 \\ \dot{z}_2 \end{bmatrix} = s \begin{bmatrix} -1 & 0 \\ a_{21} & -1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} + \begin{bmatrix} c \\ 0 \end{bmatrix} u_1 \qquad a_{21} > 0$$

activity in z_2 is coupled to z_1 via coefficient a_{21}

Neurodynamics Positive modulation

$$\begin{bmatrix} \dot{z}_1 \\ \dot{z}_2 \end{bmatrix} = s \begin{bmatrix} -1 & 0 \\ a_{21} & -1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} + u_2 \begin{bmatrix} 0 & 0 \\ b_{21}^2 & 0 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} + \begin{bmatrix} c \\ 0 \end{bmatrix} u_1 \qquad b_{21}^2 > 0$$

activity in z_2 is coupled to z_1 via coefficient a_{21}

Neurodynamics Reciprocal connections

Bilinear state equation in DCM for fMRI

LFP/BOLD Standard biophysical model

Arthurs & Boniface, TINS, 2000

LFP/BOLD Standard biophysical model

DCM hemodynamic model

Olivier David – 09/10/2012 – Ecole Interdisciplinaire sur les Systèmes Complexes

DCM hemodynamic model

Haemodynamics Reciprocal connections

Haemodynamics Reciprocal connections

Conceptual overview

DCM roadmap

Estimation: Bayesian framework

Model comparison

• Which model is the best among a set of competing models?

- Model evidence: $\log p(y | m) = accuracy(m) -$

complexity(m)

Penny et al., NeuroImage, 2004; PLoS Comp Biol, 2010

CANONICAL EXAMPLE

This models is used to assess the site of attentionmodulationduring visual motion processing in anfMRI paradigm reported by Büchel & Friston.Attention

<u>Model 1:</u> attentional modulation of V1 \rightarrow V5

<mark>ut des Neurosciences</mark> R E N O B L E

<u>Model 2:</u> attentional modulation of SPC→V5

Bayesian model selection:

Model 1 better than model 2

 $\log p(y \mid m_1) \gg \log p(y \mid m_2)$

 \rightarrow Decision for model 1:

in this experiment, attention primarily modulates V1→V5

WHAT ABOUT HEMODYNAMIC PARAMETERS?

Studying neurovascular coupling with DCM

 Hemodynamics of the epileptic focus in the GAERS model of absence epilepsy

Why such difference of hemodynamics?

David et al., PLoS Biol, 2008

Studying neurovascular coupling with DCM

 DCM performs a biologically informed HRF deconvolution and estimates hemodynamical parameters for each ROI

Factorial structure of model specification in DCM10 (SPM8)

- Three dimensions of model specification:
 - bilinear vs. nonlinear
 - single-state vs. two-state (per region)
 - deterministic vs. stochastic
- Specification via GUI.

jion)	Dynamic Causal Modelling Section
	modulatory effects bilinear nonlinear
Dynamic	Causal Modelling
Μοάει οράοι	s modulatory effects bilinear states per region one two
namic Causal Mode	
modulatory e	fects bilinear
states per i	gion one
stochastic e	fects no yes

Bilinear vs. nonlinear

Bilinear state equation:

$$\frac{dx}{dt} = \left(A + \sum_{i=1}^{m} u_i B^{(i)}\right) x + Cu$$

Nonlinear state equation:

$$\frac{dx}{dt} = \left(A + \sum_{i=1}^{m} u_i B^{(i)} + \sum_{j=1}^{n} x_j D^{(j)}\right) x + Cu$$

Stephan et al., NeuroImage, 2008

Single-state vs. two-state DCMs

Stochastic DCM

$$\frac{dx}{dt} = (A + \sum_{j} u_{j} B^{(j)}) x + Cv + \omega^{(x)}$$
$$v = u + \omega^{(v)}$$

- all states are represented in generalised coordinates of motion
- random state fluctuations w^(x) account for endogenous fluctuations, have unknown precision and smoothness
 → two hyperparameters
- fluctuations w^(v) induce uncertainty about how inputs influence neuronal activity
- can be fitted to resting state data

Li et al., NeuroImage, 20011

CONCLUSION

Conclusion Planning a compatible DCM study

- Hypothesis and model:
 - define specific a priori hypothesis
 - which models are relevant to test this hypothesis?
 - check existence of effect on data features of interest
- Suitable experimental design:
 - any design that is suitable for a GLM
 - preferably multi-factorial (e.g. 2 x 2)
 - e.g. one factor that varies the driving (sensory) input
 - and one factor that varies the modulatory input