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Slice-timing effects and their correction in functional MRI
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Exact timing is essential for functional MRI data analysis. Datasets are commonly measured using repeated 2D
imaging methods, resulting in a temporal offset between slices. To compensate for this timing difference,
slice-timing correction (i.e. temporal data interpolation) has been used as an fMRI pre-processing step for
more than fifteen years. However, there has been an ongoing debate about the effectiveness and applicability
of this method. This paper presents the first elaborated analysis of the impact of the slice-timing effect on
simulated data for different fMRI paradigms andmeasurement parameters, taking into account data noise and
smoothing effects. Here we show, depending on repetition time and paradigm design, slice-timing effects can
significantly impair fMRI results and slice-timing correction methods can successfully compensate for these
effects and therefore increase the robustness of the data analysis. In addition, our results from simulated data
were supported by empirical in vivo datasets. Our findings suggest that slice-timing correction should be
included in the fMRI pre-processing pipeline.
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Introduction

Functional magnetic resonance imaging (fMRI) data sets are
generally acquired using sequential 2D imaging techniques like
single-shot echo planar imaging sequences (Stehling et al., 1991;
Turner et al., 1998). Since fMRI data analysis is essentially a time
course analysis, exact timing with respect to the stimulus presenta-
tion paradigm is crucial.

Single-shot EPI sequences allow for single-slice acquisition times
in the range of 50–150 ms. Whole-brain coverage is achieved by
sequentially repeated image acquisition for a stack of individual slices.
Depending on brain coverage and slice thickness, a whole volume can
be acquired within typical repetition times (TRs) ranging from
hundreds of milliseconds to several seconds. This causes slice
acquisition delays between individual slices which may add up to
significant temporal shifts over the full 3D volume between the
expected and actually measured hemodynamic response (Fig. 1). As a
consequence, the reliability and power of time series analysis may be
compromised, resulting in degraded sensitivity to detect activations.
To compensate for slice acquisition delays slice-timing correction
(STC) has been proposed as a pre-processing step (Calhoun et al.,
2000; Henson et al., 1999) and is currently included in all major fMRI
software packages (such as SPM, AFNI, BrainVoyager or FSL). In STC,
the individual slice is temporally realigned to a reference slice based
on its relative timing using an appropriate resampling method.
Different data interpolation methods have been proposed for STC
including linear, sinc and cubic spline interpolation (Goebel, 2010).

A more elegant way would be to model known nuisance factors
during analysis rather than changing the data. Accordingly, it has also
been suggested to account for slice-timing differences via adjust-
ments in the analysis procedure, in particular the model setup, by
using (a) additional regressors based on the temporal derivatives of
the expected hemodynamic response function in the general linear
model (GLM), or (b) slice-dependent regressors time-shifted accord-
ing to their acquisition lag (Henson et al., 1999).

Adding temporal derivatives might be advisable to compensate for
non-linear neural and vascular effects resulting in time-shifted and
time-dispersed BOLD responses in different regions, a crucial issue
particularly for event-related fMRI (Calhoun et al., 2004; Friston et al.,
1998;Worsley and Taylor, 2006). However, it has not been shown yet,
whether including temporal derivatives into the GLM can fully
compensate for slice acquisition delays.

The second strategy to counter slice-timing effects is based on
constructing slice-specific time-shifted regressors (Henson et al.,
1999). This strategy, however, is problematic with spatially smoothed
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Fig. 1. Illustration of the slice-timing problem. The hemodynamic responses of the
individual slices are acquired at different points in time (top), yielding an aberration in
the scanned data (bottom). The observed time courses of a hemodynamic response
reach their maximum amplitude earlier in slices acquired later. Without adequate
compensation this leads to biased estimators in fMRI analysis.
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data sets. In many fMRI processing pipelines spatial smoothing is
considered a mandatory pre-processing step; it not only allows for
random-field approximation based corrections for multiple compar-
isons, but also for group analyses in standard space (and also to
increase image signal-to-noise ratios) (Hopfinger et al., 2000). Usually
6−10 mm3 isotropic Gaussian kernels are used for smoothing,
leading to considerable signal dispersion across adjacent slices.
Whereas this is not a serious concern for sequentially acquired
volumes, it may cause significant estimator bias for interleaved
acquisition, because neighboring slices are typically about a half TR
apart in time.

So far, no extensive study has been published on the effectiveness
and robustness of STC and potential unwanted effects on data quality.
Henson et al. (1999) showed a better detection rate of neural activity
for slice-timing corrected data for a particular event-related design.
Since then, the applicability of STC, and whether to perform it or not,
has been discussed vigorously (if informally) within the neuroimag-
ing community. The main contention has been whether slice-timing
correction removes artefactual variance components when there is a
long interval between scans (e.g. TRN2 s). This is the situation in
which STC would be most effective but it is also the situation, which
presents the greatest problems for STC interpolation schemes. This
paper is an attempt to treat slice-timing effects formally and assess
whether their correction can improve fMRI data analyses.

Here we assess the influence of slice acquisition delays (slice-
timing effects) using simulated data sets varying acquisition param-
eters, paradigm designs and noise levels. Herein we compare the
results from GLM analyses of uncorrected and slice-timing corrected
data (as implemented in SPM8) in order to quantify the efficacy of STC
methods. To further assess the interaction between STC and the
inclusion of temporal derivatives in the GLM, we compared STC to no
STC, with and without temporal derivatives. This resulted in a
comparison of four schemes or methods corresponding to the cells
of a 2×2 factorial design. To validate the conclusion from simulated
data, we also show the results of a study in human subjects using a
paradigm, which was specifically designed to investigate slice-timing
effects in real fMRI studies.
Methods

Slice-timing correction approaches

Different methods of temporal interpolation can be used for slice-
timing correction. While linear interpolation (Eq. (1)) is easily
implemented and fast, it may introduce undesired temporal smooth-
ing and more sophisticated interpolation schemes are preferred, such
as sinc interpolation as used by default within SPM8. Assuming an
acquired time series y of slice number n at time point t(n), linear
interpolation to the slice-time of a reference slice t(r) can formally be
expressed as:

y rð Þ
n =

t rð Þ−t n−1ð Þð Þyn + t nð Þ−t rð Þð Þyn−1

t nð Þ−t n−1ð Þ ð1Þ

An efficient implementation of the sinc interpolation (Eq. (2))
entails applying a phase shift (i.e. adding a constant value) in the
frequency domain of the signal, obtained by fast Fourier transforma-
tion. This method is used in SPM, using an implementation to
compensate for interpolation and wrap-around effects (Calhoun et al.,
2000).

y rð Þ
n = ∑

∞

i=−∞
xisinc

π
TR

r−iTRð Þ
� �

ð2Þ

Cubic spline interpolation is the default interpolation method in
BrainVoyager (Goebel, 2010).

The effects of slice-timing correction were studied based on
extensive simulations covering a wide range of blocked and event-
related design paradigms, varying inter-stimulus intervals, contrast-
to-noise ratios (CNRs), slice acquisition orders and TRs. In addition,
fMRI data from a specifically designed group study were analyzed in
order to validate the findings in simulated data. Slice-timing
corrections were performed using the spm_slice_timing.m function
as implemented in SPM8 (Wellcome Trust Centre for Neuroimaging,
UCL, UK) and results were analyzed using MathWorks MATLAB
R2009a (Natick, MA, USA).

Simulated data

A set of 4-dimensional matrices were created to simulate a series
of MRI scans with 20 slices, a resolution of 32×32 px2 and 300
seconds run duration. Voxel size was set to 1.5×1.5×3 mm3. The time
courses of each set were based on different blocked and event-related
designs convolved with the canonical hemodynamic response
function included in SPM8.

The length of on and off blocks in blocked designs was set to 10, 15,
20, 25, and 30 s. Event-related designs were single events with an
average stimulus onset asynchrony (SOA, i.e. the time between the
onset of one stimulus and the consecutive stimulus) of 4, 6, 8, 10, and
12 s; SOAs were jittered according to a uniform distribution within
�500=0 SOA. Although very short SOAs are known to furnish low
detection sensitivity, they were included in our test set as an extreme
example.

This raw data with high temporal resolution (f=20Hz) were
sampled to temporal resolutions of TR=1, 2, 3, and 4 seconds,
including slice-dependent acquisition time differences by shifting the

response function by TR− TR
numberof slices

between the first and the

last scanned slice. Sequential and interleaved scanning orders were
simulated.

Different levels of white noise were added to time courses of each
voxel yielding simulated contrast-to-noise ratios (CNR) of 1.7, 2.5, 5,
and infinite (i.e. noise-free), respectively.
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After 3-dimensional spatial smoothing of 6 mm FWHM (isotropic
Gaussian kernel), GLM analysis was performed with stimulus onsets
aligned to the acquisition time of the middle slice. This caused a TR-
dependent slice-timing difference of approximately up to ±0.5,1,1.5,
and 2s, respectively, between slices. In separate analyses, the
temporal derivative of the response function was also modeled in
the GLM to allow some flexibility in the signal onsets and to evaluate
its capabilities in compensating slice acquisition delays (Friston et al.,
1998).

Finally, four datasets were evaluated: uncorrected (original) and
STC (STC) data, each analyzed with and without temporal derivatives
(original+TD, STC+TD) in the GLM.

Human fMRI data

Subjects
13 healthy subjects (8 male, 5 female; age: 25.4±3.3 years)

participated in this study, whichwas approved by the ethics committee
of theMedical University of Vienna, Austria, and gave written informed
consent prior to the experiment. Subjects were clinically assessed and
free of current or past psychiatric or neurological conditions. Negative
drug screening was mandatory. Nicotine or caffeine intake was not
allowed on the day of the measurement.

Data acquisition and fMRI paradigm
The participants were instructed to do bimanual finger tapping

during the display of an animated checkerboard, changing black and
white tiles with a frequency of 8Hz, in a blocked paradigm, consisting
of six blocks of 10s resting and 10s finger-tapping periods (130s total).
This design is known to robustly trigger neural activation in visual
areas (occipital lobe) and motor areas (precentral gyrus, supplemen-
tary motor area, basal ganglia). Finger movements were self-paced
and none of the subjects reported difficulties with this task.

75 volumes were acquired on a TIM TRIO 3T full-body MR scanner
(SIEMENS Medical, Germany) using single-shot 2D EPI with the
following parameters: 20 axial slices of 3mm thickness (2.1mm slice
gap) aligned to the connecting line between anterior and posterior
commissure with a matrix size of 128×128px2, TE=40ms,
TR=1800ms and a field of view of 192×192mm2 (1.5×1.5×3mm3

voxel size). Slices were acquired interleaved along the z-axis in feet-
to-head direction starting with even-numbered slices (i.e. 2, 4,…, 20,
1, 3,…, 19).

Pre-processing and analysis
Slice-timing correction as implemented in SPM8 was applied to all

13 empirical datasets. All other standard pre-processing steps were
similarly performed on both the uncorrected original data and the STC
data, including realignment to compensate for bulk head movements,
normalization to MNI space and spatial smoothing with a Gaussian
kernel of 8×8×8mm3 FWHM. Each data set was masked with the
SPM8 brainmask template.

GLM analysis was performed using regressors generated by
convolving the time course of the visual stimulation onsets and
duration with the SPM8 canonical hemodynamic response function.
Motion parameters obtained from realignment were included in the
GLM. All other analysis steps were identical to those described for
simulated data, yielding four datasets of uncorrected and slice-timing
corrected data, each with and without temporal derivatives. The
Fig. 2. Effects of including temporal derivatives (TD) [A] or performing slice-timing correction
uncorrected (red) and corrected (green) data for blocked and event-related designs (upper a
columns). Values are shown relative to the maximum parameter estimate of the uncorrecte
range from highest to lowest estimate. It can be seen that parameter estimates of the slice-tim
the uncorrected datasets and therefore closer to the unbiased estimates with optimal tempor
estimates were consistently gained for slice-timing corrected data sets.
single-subject parameter estimatemaps from the canonical regressors
were used for second level group analyses.

We assessed the effect of slice-timing correction and temporal
derivative modeling in two ways. First, we quantified the bias in
parameter estimation, associated with temporal correction and
modeling, by examining the parameter estimates relative to the
estimates from noiseless data. To assess sensitivity, we analyzed all
combinations of treated data to test for activations at the group level
in the empirical study, using statistical parametric maps based upon
T-statistics.
Results

Simulated data

Our results clearly showed a reduction of parameter estimates (β-
values) with increased estimator bias, depending on the measure-
ment and paradigm parameters. In general, this bias was reduced by
the STC procedure.

As expected, the reduction of parameter estimates due to slice-
delay effects were more pronounced for long TRs, event-related
designs and designswith shorter SOA.We found amaximumdecrease
of parameter estimates of 63% (event-related design, average
SOA=4s, TR=4s). In blocked designs we observed a reduction of
12% (block length 10s, TR=4 s). Note that in our simulations the
paradigm regressors and slice-timing correction are temporally
aligned to the middle slice of the 3D volume. Therefore, a TR of e.g.
4 s in this simulation is comparable to a dataset with a TR of 2s when
the first (or last) slice acquired are used as a reference slice. This can
be a reasonable practice, if the region of interest and putative
activations are located near the first (or last) slice because it
suppresses temporal interpolation effects in these areas.

Compared to uncorrected data an increase of parameter estimates
was found for all tested paradigms, TRs and CNRs in slice-timing
corrected data. Importantly, STC did not cause a decrease in average or
minimum parameter estimates in any of our datasets (Fig. 2B). One
simulation set (event-related design, average SOA=4s, TR=4s;
Fig. 2B, lower panel, 1st box, 4th column) showed a decrease by 4%
in maximum parameter estimates. This, however, is attributable to
aliasing artifacts caused by noncritical sampling, which can occur
when the average SOA is shorter or equal to the TR.

Omitting STC and compensating for slice-timing effects by
including the temporal derivatives into the model yielded no increase
in mean parameter estimates (Fig. 2A).

While higher levels of Gaussian noise caused higher residual
values in the result of the GLM analysis, it had little impact on the
parameter estimates. We found no noise-related changes in the
performance efficiency of slice-timing correction.

To better assess the consequences of slice-timing correction we
further analyzed its effect on the parameter estimates in individual
slices. Fig. 3 shows a comparison of typical event-related designs. It
can be seen that in all presented cases slice-timing correction led to an
increase of parameter estimates and a reduction of residuals. We
found this for all tested designs and image parameters, with the
exception of designs with subcritical sampling. It should be noted,
however, that this decrease in parameter estimates was not due to a
failure of the slice-timing correction algorithm but due to aliasing
artifacts because of noncritical sampling of the data.
(STC) [B] on simulated data. The figure shows a comparison of parameter estimates for
nd lower boxes respectively), varying TRs (columns) and CNRs (sub-columns within TR
d, noise-free data. Bold lines indicate the mean across all slices. Shaded areas show the
ing corrected datasets [B] are, in general (higher mean and smaller range), higher than

al alignment (i.e. 100%). Also for lower contrast-to-noise ratios (CNRs) higher parameter



Fig. 3. Slice-dependent changes in a selection of typical event-related designs. The top part of each graph shows a comparison of parameter estimates from uncorrected (red) and
slice-timing corrected (green) data sets. Dashed lines represent the parameter estimates of models where temporal derivatives were included. Residuals of the models are plotted at
the bottom part of the graphs. To visualize the impact of spatial smoothing on the temporal alignment the same data is presented 3D (panel A) and 2D (panel B) smoothed.
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Three-dimensional smoothing may conceal the effects of STC on
the individual slices. Therefore we also analyzed simulated images
that were only smoothed in-plane. For our tested datasets slice-timing
correction yielded robust and profound improvements of parameter
estimates for all individual slices. There was a significant decrease of
parameter estimates and increase of residuals in the uncorrected
datasets in slices with larger temporal offset (Fig. 3).

Human fMRI data

As expected, the paradigm stimulated brain activation changes
in the motor areas (M1, SMA, z=56mm [MNI]), the visual cortex (V1,
z=−4mm [MNI]) and the cerebellum (culmen, V1, z=−24mm
[MNI]) (Fig. 4, left table, original).
Comparing slice-timing corrected and uncorrected data using
paired T-tests (Fig. 4, right table, orig. vs STC) revealed significant
(pb0.001) activation differences. This particularly affected dorsal
regions, i.e. regions with higher temporal offset due to the acquisition
direction, where the slice-timing effect was expected to be most
dominant. Importantly, robust SMA activationwas detected in the STC
data sets only. Differences were less prominent in ventral brain
regions, where slice-timing effects were expected to be lower.

For uncorrected data, adding temporal derivative regressors in the
design matrix caused a reduction in sensitivity, particularly in the
motor network (M1 and SMA) (Fig. 4, left table, TD, and right table,
xtitoriginal vs TD).

Including the temporal derivatives in the GLM analysis of the slice-
timing corrected data yielded higher parameter estimates in the focal



Fig. 4. Comparison of in vivo fMRI data. Group SPMs of a visual-motor task versus rest condition (left table) and paired t-test comparisons of compensation strategies for slice-timing
effects. Threshold was set to pb0.001. The positive effects of slice-timing correction on the parameter estimates (STC, left table, third column) are present particularly in the motor
network (first row). Due to our measurement parameters (feet-to-head acquisition order) slice-timing effects were expected to be most prominent in this dorsal section.
Comparison of the uncorrected and STC data revealed significant increase of t-values in group statistics.
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point of M1 activation (Fig. 4, left table, STC+TD, and right table,
original vs STC+TD). However, we found no activation in the SMA.

Discussion

Our results clearly show a benefit of slice-timing correction for
parameter estimation on single-subject level, which, in turn, could
significantly improve sensitivity in group statistical analysis. This is
particularly true for event-related designs and blocked designs with
short block length. Analysis of in vivo fMRI images supported our
findings from simulated data.

No adverse effects of STC with respect to parameter estimate bias
were found for realistic paradigm designs. Higher noise levels had no
impact on estimates or the efficiency of the applied STC algorithm.
Further, no adverse effects were found in in vivo datasets with non-
Gaussian noise due to physiological and motion artifacts.

While beneficial effects were found for STC, adding temporal
derivatives to the model did not suppress bias (shrinkage) in
parameter estimates to the same extent. Clearly, the shrinkage of
parameter estimates does not necessarily decrease sensitivity,
provided the between subject variability in parameter estimates
decreases in proportion. However, our empirical example suggests
that slice-timing correction increased sensitivity to group effects in a
way that was subverted by including temporal derivatives. It has been
shown previously that using TD in whole-brain analyses can diminish
power depending on the response latency (Della-Maggiore et al.,
2002). This finding is consistent with our findings.

Furthermore, we know that temporal derivatives can explain
variance due to temporal delays of about ±1s (Henson et al., 2002).
This upper bound on the delays that temporal derivatives can handle
reflects the failure of the first-order Taylor expansion implicit in their
use, which is determined quantitatively by the characteristic time
constants of the HRF. This bound means that, even under the
assumption of an optimal model (i.e. regressors time-locked to the
middle of one TR), derivatives will not model adequately slice-timing
effects caused by TRs greater than 2s. Our simulations corroborate this
fact and additionally showed no consistent improvements even for
shorter TRs. This is expected as the canonical HRF and its derivative
can lose their orthogonality when convolved with a stimulus function.
Therefore, a part of the variance explained by the canonical HRF
regressor may be modeled by its derivative. In general, including the
temporal derivatives will thus lead to a decrease in residuals, possibly
increasing statistical significance on the single-subject level, but it will
also reduce the parameter estimates of the canonical regressor. This
may reduce sensitivity, as only the latter usually enter ordinary least
squares random-effects group analysis. In principle, the problem of
non-orthogonality can be addressed by specifying (F) contrasts at the
second level over both the canonical and temporal derivative
parameter estimates. However, this depends upon their being a
consistent group effect on both, which may not be guaranteed if slice-
timing effects are artefactual (Calhoun et al., 2004; Henson et al.,
1999; Steffener et al., 2010).

The question of whether to include temporal derivatives or not is
really an issue of model selection. Generally speaking, their inclusion
will explain away early or late hemodynamic responses, which could
reduce sensitivity. On the other hand, it is at least theoretically
possible that modeling real or artifactual latency differences will
increase the precision of parameter estimates. The overall impact on
sensitivity to canonical hemodynamic responses is clearly difficult to
generalize about. However, the procedure described in this paper
provides a simple protocol for assessing the impact of temporal
derivatives, with or without slice-timing correction (see Fig. 4).

The results in this paper are based on SPM8's implementation of
the STC algorithm. Nevertheless, our findings should be transferable
to the implementations in other fMRI applications, as cubic spline
interpolation and sinc interpolation have been shown to provide
almost identical results (Goebel, 2010).

A sometimes-neglected issue is the interaction of the slice-timing
effect and motion. Subject movement along the z-axis or head tilts
around the x-axis will introduce not only spatial but also temporal
artifacts. This is a concern particularly for clinical applications where
patients might not be able to fully suppress their movements while in
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the scanner. Given the nature of typical serial fMRI pre-processing
pipelines one could consider performing slice-timing correction
before realignment if subject movement is moderate. In the presence
of pronounced inter-slice movements it might be preferable to realign
before STC. Clearly, serial correction approaches like these are
suboptimal and cannot compensate for the interactions between
time shifts and movement (Bannister et al., 2007), and a combined
method of motion and timing correction might thus be indicated
(Bannister et al., 2004). However, this is not yet implemented in the
major fMRI analysis packages.

A non-beneficial side effect of all resampling methods is the
possible introduction of aliasing effects for signals at frequencies
above the Nyquist sampling limit of f = 1

2 × TR. Given a typical TR of
2 s (f=0.25Hz) a minimal inter-stimulus interval (ISI) of more than
4s is recommended. When using the slice acquired in the middle of
the acquisition period (TR) as a reference slice, the signal needs to be
shifted by TR / 2, therefore reducing the suggested minimal ISI to 2s.
When choosing the mid-slice as the target less temporal interpolation
is needed. This might decrease the risk of interpolation artifacts. Note
that all regressors in the GLM also need to be adjusted for this shift in
time by TR / 2.

Finally, Holmes et al. (1997) had shown that no physiologically
induced signal change was present at frequencies over 0.25Hz. As a
consequence fMRI data can be assumed band-limited, which means
that potential aliasing effects by STC only affect signal components
originating from noise.

In conclusion, slice-timing correction has been shown to suppress
bias in quantitative parameter estimates at the single-subject level
and, empirically, to increase sensitivity in group-level statistical
inferences.
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