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fMRI data acquisition parameters – first dataset

[Achard et al. 2006, Achard and Bullmore 2007]

90 anatomical regions: space average of the fMRI time series over
all voxels in 90 regions [Tzourio-Mazoyer et al. 02]

SPM preprocessing: correction for geometrical displacements

Resting state: lying quietly with eyes closed during 10 minutes

Graph analysis: Mean of the correlation with 5 healthy volunteers

Group comparison:
15 young healthy volunteers (24.7 years), 11 healthy old volunteers
(66.5 years)
Placebo and drug (sulpiride)
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fMRI data acquisition parameters – second dataset

[Achard et al. 2012]

90 and 417 anatomical regions: space average of the fMRI time
series over all voxels in 90 and 417 regions [Tzourio-Mazoyer et al.
02]

SPM preprocessing: correction for geometrical displacements

Resting state: lying quietly with eyes closed during 20 minutes

Group comparison:
20 young healthy volunteers, 17 patients in coma
Placebo and drug (sulpiride)
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Individual graphs: representation of networks for a given
threshold
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Measures extracted on the network

Node Degree Mean minimum path length Clustering coefficient

1 4 1.41 0.125

5 5 1.42 0.02

9 0 ∞ ∞

Small-world [Watts and Strogatz, 98]
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Measures extracted on the network

Node Degree Nodal efficiency Local efficiency

1 4 0.55 0.72

5 5 0.58 0.25

9 0 0 0

Economical efficiency [Latora et al., 01]
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Degree, Global efficiency and Local efficiency

Degree = number of connections that node makes to other nodes in the
graph.
G = [Gij ]1≤i ,j≤N is the adjacency matrix 1 ≤ i , j ≤ N, Gij = 0 or 1.

Di =
∑
j∈G

Gij .

Efficiency = inverse of the harmonic mean of the minimum path length
Lij between a node i and all the other nodes j in the graphs.

Eglobi =
1

N − 1

∑
j∈G

1

Lij

Clustering, also called “local efficiency” = measure of information
transfer in the immediate neighbourhood of each node

Clusti =
1

NGi
(NGi

− 1)

∑
j ,k∈Gi

1

Ljk
,
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Modular organization of human brain functional networks

[Meunier et al. NeuroImage 2009]

Partitioning the networks into a set of modules

dense inter-modular connectivity

sparse inter-modular conmnectivity

Module 2Module 1
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Modularity measure

[Newman et al. 2004]

M =

NM∑
s=1

[
ls
L
− ds

2L

]
NM = number of modules
L = total number of edges in the network
ls = total number of edges between nodes in module s
ds = sum of the degrees of nodes in module s

Module 2Module 1
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Modularity measure

[Newman et al. 2004]

M =

NM∑
s=1

[
ls
L
− ds

2L

]
M = 0 when no edges

M = 0 when all the nodes are connected to each other

maximisation of M is ’NP-hard’ problem

Module 2Module 1
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Modularity measure

[Newman et al. 2004]

M =

NM∑
s=1

[
ls
L
− ds

2L

]
Objective : Optimization of modularity

link centrality to incrementally increase network modularity to a
maximum [Newman et al. 2004]
direct search with the “greedy” algorithm [Newman et al. 2004]
direct search with the simulated annealing [Guimerà et al. 2005]

Module 2Module 1
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Other graph metrics

Betweenness centrality

Percolation

Spectral graphs

Rich club

. . .

Toolbox on R: igraph Ref: for example [Rubinov et al., 09]
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Choice of threshold for a given scale
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Modular organization of human brain functional networks

Young Older

Number of brain regions

M
od

ul
es

0 5 10 15 20 25 30

central
frontal

posterior
ventral frontal

medial temporal

Number of brain regions

M
od

ul
es

0 5 10 15 20 25 30

central
posterior

temporal
frontal

medial posterior
ventral frontal

Sophie Achard (CNRS, Grenoble) Fractal brain connectivity 27/09/2013 12 / 39



Modular organization of human brain functional networks

Young Older

Number of brain regions

M
od

ul
es

0 5 10 15 20 25 30

central
frontal

posterior
ventral frontal

medial temporal

Number of brain regions

M
od

ul
es

0 5 10 15 20 25 30

central
posterior

temporal
frontal

medial posterior
ventral frontal

Sophie Achard (CNRS, Grenoble) Fractal brain connectivity 27/09/2013 12 / 39



Comparison between groups, for a given number of edges

15 young healthy volunteers (24.7 years), 11 healthy old volunteers (66.5
years). Placebo and drug (sulpiride)
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Comparison between groups, without threshold

15 young healthy volunteers (24.7 years), 11 healthy old volunteers (66.5
years). Placebo and drug (sulpiride)
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Comparison between groups, region level
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Comparison between groups, region level
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Machine learning with brain graphs

Why extracting lots of graph metrics?

[Richiardi et al. 13]
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Comparison between metrics and correlations

Two groups comparisons using a set of metrics
(y=young, o=elderly, b=balance)

When using correlation coefficients
(SVM):

Py = 87%, Po = 64%, Pb = 76%.

Embedding the thresholded
400-edges weighted graphs in the
same way (C4.5 tree):

Py =93%, Po = 73%, Pb = 83%

[Richiardi et al. 11, Achard et al. 07 ]
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Generative models

A simple one: the Watts and Strogatz model.

How to move from a regular graph to a random one by rewiring the edges?

Regular Small−world Random

[Watts and Strogatz 1998]
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Generative models

Objective: Based on observations of real networks, how to generate
networks with a simple mathematical expression.

Barábisi model: scale-free graphs. Based on preferential attachement

Economical model: [Kaiser and Hilgetag 2004]

Pij ∼ exp(−ηdij)

Economical preferential attachement: [Yook et al. 2002]

Pij ∼ (kikj)
γd−ηi ,j

Economical clustering model: [Vértes et al. 2012]

Pij ∼ (ki ,j)
γd−ηi ,j

where ki is the degree of node i and ki ,j is the number of nearest
neighbours in common between nodes i and j .
Sophie Achard (CNRS, Grenoble) Fractal brain connectivity 27/09/2013 19 / 39



Generative models

[Vértes et al. 2012]
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Generative models

[Vértes et al. 2012]Sophie Achard (CNRS, Grenoble) Fractal brain connectivity 27/09/2013 21 / 39



Resilience to attacks

Comparison of the human brain functional network with other networks:

Erdos-Renyi random graphs : randomly chosen connections

Scale-free graphs : distribution of the degree = power law
(e.g. WWW)

Random

Scale-free

Brain
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Resilience of human brain functional network
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Resilience of human brain functional network
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Resilience of human brain functional network
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Resilience of human brain functional network
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Introduction: Disorders of consciousness

Following Plum and Posner (1983), consciousness has two dimensions:
wakefullness (also called arousal) and awareness.

[Laureys et al. Consciousness and Cognition, 2007]
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Introduction: Disorders of consciousness

The only way to diagnose a patient in a given state is done by careful and
repeated clinical assessments of wakefulness and awareness. High rate of
misdiagnosis, especially to distinguish between vegetative state and
minimially conscious state (up to 43% evaluated in 1996).

[Laureys et al. Current Opinion in Neurology, 2005]
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Introduction: Detecting awareness using fMRI

Using Tennis Imagery to detect awareness for patient with traumatic brain
injury.

[Owen et al. Science, 2006]
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Introduction: DMN and consciousness disorders

[Vanhaudenhuyse et al. Brain 2010]
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Introduction: consciousness disorders measured using EEG

[Boly et al. Science 2011]
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Subjects description

Patients:
25 patients in coma were scanned; age range 21–82 years; 9 male. Exclusion of data on 8
patients (head mouvements)

The coma severity for each patient was clinically assessed using the 62 items of the
Wessex Head Injury Matrix (WHIM) scale: scores range from 0, meaning deep coma, up
to 62, meaning full recovery.

The patients were scanned a few days after major acute brain injury, when sedative drug
withdrawal allowed for spontaneous ventilation.

The causes of coma were different between patients: twelve had a cardiac and respiratory
arrest due to various causes; two had a gaseous cerebrovascular embolism; two had
hypoglycemia; and one had extracranial artery dissection. Six months after the onset of
coma, three patients had totally recovered, 9 had died, and 5 remained in a persistent
vegetative state.

Healthy volunteers:
The normal control group comprised twenty healthy volunteers matched for sex (11 male) and
approximately for age (range 25–51 years) to the group of patients.
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Subjects description

name age Etiology Initial WHIM Time between
accident and
scan (days)

Patient 1 36 cardiac and respiratory arrest 10 12
Patient 2 42 extracranial artery dissection 1 18
Patient 3 66 coma after gaseous embolism 1 4

(coronary by-pass surgery)
Patient 4 73 cardiac and respiratory arrest 1 3
Patient 5 21 cardiac and respiratory arrest 1 5
Patient 6 32 cardiac and respiratory arrest 1 3
Patient 7 53 cardiac and respiratory arrest 9 3
Patient 8 44 hypoglycemia 2 32
Patient 9 59 cardiac and respiratory arrest 3 15

Patient 10 82 coma after gaseous embolism 14 7
Patient 11 53 cardiac and respiratory arrest 1 5
Patient 12 78 cardiac and respiratory arrest 1 5
Patient 13 71 cardiac and respiratory arrest 1 16
Patient 14 66 cardiac and respiratory arrest 13 8
Patient 15 55 cardiac and respiratory arrest NA 5
Patient 16 49 hypoglycemia 1 18
Patient 17 25 cardiac and respiratory arrest 37 9
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Extracting the connections using fMRI modality

fMRI data acquisition

Functional MRI data were recorded while subjects lay quietly at rest
in the scanner for 20 mins. Gradient echo EPI data sensitive to BOLD
contrast were acquired using a 1.5 Tesla MR scanner (Avanto,
Siemens, Erlangen, Germany) with the following parameters: TR=3 s,
TE=50 ms, isotropic voxel size = 4x4x4mm3, 405 images, and 32
axial slices covering the entire cortex.

Two templates: 417 or 90 regions with 400 points in time, frequency
interval 0.02–0.04Hz (using wavelets).
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Extracting the connections using fMRI modality
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Patient view

Illustration of DARTEL normalisation
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Patient view

Illustration of DARTEL normalisation
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Results: global connectivity and network topology

No significant difference on global measure of functional
connectivity
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Examples of connectivity graphs
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Results: nodal connectivity

Sophie Achard (CNRS, Grenoble) Fractal brain connectivity 27/09/2013 34 / 39



Results: hub disruption index

Sophie Achard (CNRS, Grenoble) Fractal brain connectivity 27/09/2013 35 / 39



Results: hub disruption index

One index to discriminate the coma and healthy volunteers
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Results: modularity

Mean Healthy 
Volunteers 

One Healthy 
Volunteer 

One Patient 

Within-group Comparison 
of Healthy Volunteers  

Within-group 
Comparison of Patients 

Between-group 
Comparison 

Between-group 
Comparison 

NMI = 0.309 ± 0.003 

NMI = 0.253 ± 0.004 

NMI = 0.243 ± 0.003 

NMI = 0.243 ± 0.003 
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Discussion

GABAergic disinhibition of secondary pathways between undamaged
brain regions that were not used during normal functioning of the
brain. [Chen et al. Neuroscience 2002, Hagmann et al. PNAS 2010]

All the patients experienced an acute crisis of extreme cerebral
hypoxia or hypoglycemia and it is known from prior studies that
functional network hubs tend to be metabolically more expensive,
e.g., having greater rates of glucose metabolism, than non-hubs.
[Bullmore and Sporns, Nat Rev Neurosci 2012]

The emergence of new hubs in anatomical regions that were not so
topologically important before the injury represents an immediate,
perhaps interneuronally-mediated, response to brain injury. [Honey et
al. 2007]
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Conclusion

The brain function is a complex network

The networks characteristics can discriminate between groups

The visualisation of the global brain is possible
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