
Fractal brain connectivity
Functional connectivity using wavelets and graph theory

Part II: Extration of connectivity graphs

Sophie Achard

CNRS, GIPSA-lab, Grenoble
sophie.achard@gipsa-lab.inpg.fr

Grenoble, 27 September 2013

Sophie Achard (CNRS, Grenoble) Fractal brain connectivity 27/09/2013 1 / 29



1 Why the brain can be modelled as a complex network?
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The human brain as a complex network : anatomical
description

1011 neurons

Connected via axons and dendrites
(1014 connections)

Transmission of nerve signals
(segregated and distributed
information)
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Examples of microscopic anatomical description of brains

macaque visual 305 conn. 32 areas Felleman, Van Essen 1991
cortex Young 1992/93

C. elegans 2462 conn. 282 neurons Brenner 1974
Watts et al. 1998

cat 1139 conn. 65 areas Young 1992/93
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Human brain complex network : Anatomical connectivity

diffusion tensor imaging

diffusion spectrum imaging

cortico thickness

[Hagman 2008]
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The challenges

How can we describe the processing of information in the brain ?

How can we predict the resilience of the brain functions in case of
illness or stroke ?

How can we characterize the brain dynamics during a task ?
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How to explore the functional brain network ?

Non-invasive techniques:

Electroencephalograpy – EEG

Magnetoencephalography – MEG

Functional Magnetic Resonance Imaging – fMRI
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How to explore the functional brain network ?

Non-invasive techniques:
Electroencephalograpy – EEG:
[Caton 1875, Beck 1890, Pravidich-Neminsky 1912, Cybulsky et al. 1914, Berger 1920]

Recording of the brain’s spontaneous electrical activity from multiple
electrodes placed on the scalp.

Copyright 2008 Nucleus Medical Art, Inc Wikipedia
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How to explore the functional brain network ?

Non-invasive techniques:
Magnetoencephalograpy – MEG:[Cohen 1968]

Measure of the magnetic fields produced by electrical activity in the brain
via extremely sensitive devices such as superconducting quantum
interference devices (SQUIDs).

VSM MedTech Ltd. Wikipedia
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How to explore the functional brain network ?

Non-invasive techniques:
Functional Magnetic Resonance Imaging – fMRI:
[Ogawa 1990, Kwong 1991]

Measure of the haemodynamic response related to neural activity in the
brain.

→ changes in blood flow and blood oxygenation in the brain
(hemodynamics) are closely linked to neural activity. [Roy and Sherrington, 1890]

→ increase in blood flow to regions of increased neural activity, occurring
after a delay of approximately 1-5 seconds.

hemodynamic response :

blood releases oxygen to active neurons at a greater rate than to
inactive neurons
magnetic signal variation = difference in magnetic susceptibility
between oxyhemoglobin and deoxyhemoglobin (thus oxygenated or
deoxygenated blood)

BOLD(Blood-oxygen-level dependent)= MRI contrast of blood
deoxyhemoglobin
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How to explore the functional brain network ?

Non-invasive techniques:
Functional Magnetic Resonance Imaging – fMRI:
[Ogawa 1990, Kwong 1991]

Measure of the haemodynamic response related to neural activity in the
brain.

Copyright Hunter G Hoffman. Wikipedia
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Contruction of functional networks : choosing the nodes

With EEG : the nodes will be the sensors (64-128)

With MEG : the nodes will be the sensors (300)

With fMRI : the nodes can be the voxels (105) or some pre-defined
anatomical of functional areas (100-2000)
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Choosing the nodes in fMRI

Computational cost is too high when considering the voxels

The voxels are noisy

Anatomical definitions of brain areas is independent of the explored
brain function

There is no perfect solutions! It is still under investigations!

Some references [Eguiluz 2005, Salvador 2008, Wang 2009, Fornito 2009]
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Extracting the connections using fMRI modality
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Working data

→ Brain fMRI : 90 regions

→ each region :
1 time series of length between
512 and 2048

→ Brain MEG : 275 channels

→ each channel :
1 time series of length between
6144 and > 106
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fMRI and MEG time series characteristics :

→ long memory processes

→ difficulties to parametrize them

→ short sequence of times series in fMRI

→ But large set of time series!
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Wavelets and correlation

Why using the wavelets ?

Estimation of correlation non consistent for long memory processes

Prior observations from EEG : coherence not equal at all frequencies

Already shown frequency dependent correlation [Salvador et al. 04]
→ High and low frequency phenomena

One example of wavelet functions: Daubechies 8
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An example of wavelet decomposition

Example with a signal X (t) = cos(t/5) + cos(t/10) +N (0, 0.4):
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X (t) = cos(t/5) + cos(t/10) +N (0, 0.4)

d1

d2

d3

d4

d5

d6

s6
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Wavelets and correlation

Example of the non consistency of the classical estimator of
correlation:

X Y

Correlation(X,Y) = 0.597

Wavelet correlation :

Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6 Remainder
0.059 0.053 0.029 0.08 0.115 0.041 1
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Discrete Wavelet Transform (DWT)

X a time series of length N

Wavelet coefficients
W

(X )
j ,t =

Lj−1∑
l=0

hj ,lXt−l mod N

Scaling coefficients
V

(X )
j ,t =

Lj−1∑
l=0

gj ,lXt−l mod N .

where {hj ,l ; l = 0, . . . , Lj − 1} and {gj ,l ; l = 0, . . . , Lj − 1} be
respectively a j − th level wavelet filter and scaling filter. Here
Lj = (2j − 1)(L− 1) + 1, with L the width of the initial filter.

→ does depend on the starting point for the origin

→ orthogonal transform

→ energy decomposition:
||X||2 =

J0∑
j=1

||Wj ||2 + ||VJ0 ||
2
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Wavelets and correlation

→ Wavelet variance : [Percival et al. 2000 ]

→ Wavelet covariance : [Whitcher et al. 2000 ]

{Xt} and {Yt} stochastic processes whose backward differences of order
dX and dY are stationary processes:

Cov{Xt ,Yt+τ} = Cov{V (X )
J,t ,V

(Y )
J,t+τ}+

J∑
j=1

γτ,XY (λj)

where V are the scale coefficients, and W are the wavelet coefficients, and
for λj = 2j−1,

γτ,XY (λj) = Cov{W (X )
j ,t ,W

(Y )
j ,t+τ}
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Wavelets and correlation

lag:τ = 0

→ Cov{V (X )
J,t ,V

(Y )
J,t } → 0 when J →∞

→ At each scale λj , γ̂XY (λj) is unbiased, Gaussian distributed

ρ̂XY (λj) =
γ̂XY (λj)

ν̂X (λj)ν̂Y (λj)
→ N (ρXY (λj),Σ)

where ν̂2
X (λj) = var(Wj)/2λj is the wavelet variance for the time serie X.

fMRI data : (2048 points in the time series)
Scale 1 2 3 4 5 6

Hz 0.23-0.45 0.11-0.23 0.06-0.11 0.03-0.06 0.01-0.03 0.007-0.01
Mean cor. 0.12 0.21 0.39 0.45 0.44 0.41
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Wavelets and correlation : fMRI examples
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Construction of the adjacency matrices

→ pair-wise inter-regional
correlations

Wavelets MODWT

Connectivity = Correlation

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

scale 1 scale 3 scale 5

scale 2 scale 4 scale 6

→ adjacency matrix
Threshold ?

Threshold

R=0.3 R=0.4 R=0.5

→ Undirected graphs :
small-world properties
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Construction of the adjacency matrices

Hypothesis tests: for all i , j , 1 ≤ i , j ≤ 90, i 6= j

H0 : P(ρi ,j ≤ R) H1 : P(ρi ,j > R)

Problems :

Multiple hypotheses tests : 4005 tests
→ Application of the False Discovery Rate [Benjamini et al. 01]

Choice of threshold R:
→ Free parameter
→ No rationale for its choice
→ Need to compare graphs with same number of edges
→ Maximise interesting properties

Sophie Achard (CNRS, Grenoble) Fractal brain connectivity 27/09/2013 21 / 29



Multiple hypotheses tests

Number of errors committed when testing 4005 null hypothesis
n0 = number of true null hypotheses

Not rejected Rejected Total

True null hypotheses U V n0

Non-true null hypotheses T S 4005− n0

4005−W W 4005
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Multiple hypotheses tests

Number of errors committed when testing 4005 null hypothesis
n0 = number of true null hypotheses

Not rejected Rejected Total

True null hypotheses U V n0

Non-true null hypotheses T S 4005− n0

4005−W W 4005

PCER = E (V/4005), less than α if each tests control at level α.
→ do not take into account the multiple test.

FWER = P(V ≥ 1), less than α if each tests control at level α/4005.
→ Problem when the number of hypotheses is large, too conservative
test.

FDR = P(W > 0)E (V/W|W > 0), i.e. control of the proportion of
rejected null hypotheses which are erronously rejected.
→ less stringent, and a gain in power.
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Multiple hypotheses tests : FDR procedure

[Benjamini et al. 01]

Hypotheses : H1,H2, . . . ,H4005

Corresponding p-values : p1, p2, . . . , p4005

and p(1), p(2), . . . , p(4005) the ordered p-values. (H(i) the null hypothesis
corresponding to p(i))

Let k be the largest i for which p(i) ≤ iα/4005
then reject all H(i), i = 1, 2, . . . , k

For independent test statistics and for any configuration of false
hypotheses, the FDR is controled at α.
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Parcellation based approaches

Trade-off between the number of point in time series and the number of
connections to explore.

Multivariate normal sample where all but two of the p = 500 variables are
mutually uncorrelated as n decreases over the range 50, 25, 10. These two
variables have a correlation coefficient equal to 0.8.
[Hero et al. 11]
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Parcellation based approaches
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Parcellation based approaches
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Parcellation based approaches

An example using a patient with craniectomy on the left part of the brain.

90 regions
400 mostly connected pairs (without multiple corrections)

Using 405 points in time
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Parcellation based approaches

An example using a patient with craniectomy on the left part of the brain.

90 regions
400 mostly connected pairs (without multiple corrections)

Using 200 points in time
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Parcellation based approaches

An example using a patient with craniectomy on the left part of the brain.

90 regions
400 mostly connected pairs (without multiple corrections)

Using 70 points in time
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Parcellation based approaches

90 regions
200 mostly connected pairs (without multiple corrections)

Using 405 points in time
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Parcellation based approaches

90 regions
200 mostly connected pairs (without multiple corrections)

Using 200 points in time
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400 ↑

200

100
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Choice of threshold in terms of scales

Here 2048 points in time. [Achard et al. 06,Achard et al. 08]
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fMRI data : (2048 points in the time series)
Scale 1 2 3 4 5 6

Hz 0.23-0.45 0.11-0.23 0.06-0.11 0.03-0.06 0.01-0.03 0.007-0.01
Mean cor. 0.12 0.21 0.39 0.45 0.44 0.41

Sophie Achard (CNRS, Grenoble) Fractal brain connectivity 27/09/2013 29 / 29


	Why the brain can be modelled as a complex network?
	Microscale
	Macroscale
	The challenges

	Extraction of brain functional networks
	Measuring the activity of the brain
	Construction of functional networks
	Wavelets
	Correlations
	Parcellation based approaches
	Choice of threshold


