Fractal brain connectivity Functional connectivity using wavelets and graph theory Part II: Extration of connectivity graphs

Sophie Achard

CNRS, GIPSA-lab, Grenoble sophie.achard@gipsa-lab.inpg.fr

Grenoble, 27 September 2013

Sophie Achard (CNRS, Grenoble)

Fractal brain connectivity

Why the brain can be modelled as a complex network?

- Microscale
- Macroscale
- The challenges

2 Extraction of brain functional networks

- Measuring the activity of the brain
- Construction of functional networks
- Wavelets
- Correlations
- Parcellation based approaches
- Choice of threshold

The human brain as a complex network : anatomical description

- 10¹¹ neurons
- Connected via axons and dendrites (10¹⁴ connections)
- Transmission of nerve signals (segregated and distributed information)

Examples of microscopic anatomical description of brains

macaque visual	305 conn.	32 areas	Felleman, Van Essen 1991	
cortex			Young 1992/93	
C. elegans	2462 conn.	282 neurons	Brenner 1974	
			Watts et al. 1998	
cat	1139 conn.	65 areas	Young 1992/93	

Human brain complex network : Anatomical connectivity

- diffusion tensor imaging
- diffusion spectrum imaging
- cortico thickness

The challenges

- How can we describe the processing of information in the brain ?
- How can we predict the resilience of the brain functions in case of illness or stroke ?
- How can we characterize the brain dynamics during a task ?

Non-invasive techniques:

- Electroencephalograpy EEG
- Magnetoencephalography MEG
- Functional Magnetic Resonance Imaging fMRI

Non-invasive techniques: Electroencephalograpy – EEG:

[Caton 1875, Beck 1890, Pravidich-Neminsky 1912, Cybulsky et al. 1914, Berger 1920] Recording of the brain's spontaneous electrical activity from multiple electrodes placed on the scalp.

Copyright 2008 Nucleus Medical Art, Inc

Wikipedia

Non-invasive techniques:

Magnetoencephalograpy – MEG:[Cohen 1968]

Measure of the magnetic fields produced by electrical activity in the brain via extremely sensitive devices such as superconducting quantum interference devices (SQUIDs).

VSM MedTech Ltd.

Wikipedia

Non-invasive techniques:

Functional Magnetic Resonance Imaging – fMRI:

[Ogawa 1990, Kwong 1991]

Measure of the haemodynamic response related to neural activity in the brain.

- $\rightarrow\,$ changes in blood flow and blood oxygenation in the brain (hemodynamics) are closely linked to neural activity. $_{\rm [Roy\ and\ Sherrington,\ 1890]}$
- $\rightarrow\,$ increase in blood flow to regions of increased neural activity, occurring after a delay of approximately 1-5 seconds.

hemodynamic response :

- blood releases oxygen to active neurons at a greater rate than to inactive neurons
- magnetic signal variation = difference in magnetic susceptibility between oxyhemoglobin and deoxyhemoglobin (thus oxygenated or deoxygenated blood)

$\textbf{BOLD}(\mathsf{Blood-oxygen-level}\ \mathsf{dependent}) = \mathsf{MRI}\ \mathsf{contrast}\ \mathsf{of}\ \mathsf{blood}$

deoxyhemoglobin

Non-invasive techniques: Functional Magnetic Resonance Imaging – fMRI:

[Ogawa 1990, Kwong 1991]

Measure of the haemodynamic response related to neural activity in the brain.

Copyright Hunter G Hoffman.

Wikipedia

Contruction of functional networks : choosing the nodes

- With EEG : the nodes will be the sensors (64-128)
- With MEG : the nodes will be the sensors (300)
- With fMRI : the nodes can be the voxels (10⁵) or some pre-defined anatomical of functional areas (100-2000)

Choosing the nodes in fMRI

- Computational cost is too high when considering the voxels
- The voxels are noisy
- Anatomical definitions of brain areas is independent of the explored brain function

There is no perfect solutions! It is still under investigations!

Some references [Eguiluz 2005, Salvador 2008, Wang 2009, Fornito 2009]

Extracting the connections using fMRI modality

Working data

- \rightarrow Brain fMRI : 90 regions
- $\rightarrow\,$ each region : 1 time series of length between $\stackrel{\rm g}{\scriptstyle \circ}$ 512 and 2048
- \rightarrow Brain MEG : 275 channels
- $\rightarrow\,$ each channel :

1 time series of length between

 $6144 \text{ and } > 10^{6}$

fMRI and MEG time series characteristics :

- $\rightarrow\,$ long memory processes
- ightarrow difficulties to parametrize them
- $\rightarrow\,$ short sequence of times series in fMRI
- \rightarrow But large set of time series!

Wavelets and correlation

Why using the wavelets ?

- Estimation of correlation non consistent for long memory processes
- Prior observations from EEG : coherence not equal at all frequencies
- Already shown frequency dependent correlation [Salvador et al. 04] \rightarrow High and low frequency phenomena

One example of wavelet functions: Daubechies 8

An example of wavelet decomposition

Example with a signal $X(t) = cos(t/5) + cos(t/10) + \mathcal{N}(0, 0.4)$:

$X(t) = cos(t/5) + cos(t/10) + \mathcal{N}(0, 0.4)$

d1 พมพาสิเรียงในของสำหัดอาณา สะสุขรสมัสรีกาม ที่สายที่สุรัสทร์ รู้มีเสีรที่สุดสมาให้แห่งสมัสร้านได้มีสายได้สมาให้ส d2 ได้รักทาได้โดยในนายสุดรู้อาการให้สุดสมาสินสุดสุนสุขาวที่สายที่เห็นสุนสินส์ไปได้เห็นไปเป็นได้เห็นได้เห็นได้เห็น

d3 ปางการสาราชาวงานหมายการสาราชาวงานสาราชาวงานสาราชาวงานสาราชาวงานสาราชาวงานสาราชาวงานสาราชาวงานสาราชาวงานสาราชาวง

d5 WWWWWWWWWWWWWWWWWWWW

d6

Wavelets and correlation

Example of the non consistency of the classical estimator of correlation:

Correlation(X,Y) = 0.597

Wavelet correlation :

 Scale 1
 Scale 2
 Scale 3
 Scale 4
 Scale 5
 Scale 6
 Remainder

 0.059
 0.053
 0.029
 0.08
 0.115
 0.041
 1

Discrete Wavelet Transform (DWT)

 ${\bf X}$ a time series of length N

Wavelet coefficients

$$W_{j,t}^{(X)} = \sum_{l=0}^{L_j-1} h_{j,l} X_{t-l \mod N}$$

 L_{j-1}

Scaling coefficients

$$V_{j,t}^{(X)} = \sum_{l=0}^{L_j-1} g_{j,l} X_{t-l \mod N}.$$

where $\{h_{j,l}; l = 0, ..., L_j - 1\}$ and $\{g_{j,l}; l = 0, ..., L_j - 1\}$ be respectively a j - th level wavelet filter and scaling filter. Here $L_j = (2^j - 1)(L - 1) + 1$, with L the width of the initial filter.

 $\rightarrow\,$ does depend on the starting point for the origin

 $\rightarrow\,$ orthogonal transform

$$ightarrow$$
 energy decomposition: $||\mathbf{X}||^2 = \sum_{j=1}^{J_0} ||\mathbf{W}_j||^2 + ||\mathbf{V}_{J_0}||^2$

Wavelets and correlation

- \rightarrow Wavelet variance : [Percival et al. 2000]
- \rightarrow Wavelet covariance : [Whitcher et al. 2000]

 $\{X_t\}$ and $\{Y_t\}$ stochastic processes whose backward differences of order d_X and d_Y are stationary processes:

$$Cov\{X_t, Y_{t+\tau}\} = Cov\{V_{J,t}^{(X)}, V_{J,t+\tau}^{(Y)}\} + \sum_{j=1}^J \gamma_{\tau,XY}(\lambda_j)$$

where V are the scale coefficients, and W are the wavelet coefficients, and for $\lambda_j = 2^{j-1}$, $\gamma_{\tau,XY}(\lambda_j) = Cov\{W_{j,t}^{(X)}, W_{j,t+\tau}^{(Y)}\}$

Wavelets and correlation

 $lag: \tau = 0$

ightarrow At each scale λ_j , $\widehat{\gamma}_{XY}(\lambda_j)$ is unbiased, Gaussian distributed

$$\widehat{\rho}_{XY}(\lambda_j) = \frac{\widehat{\gamma}_{XY}(\lambda_j)}{\widehat{\nu}_X(\lambda_j)\widehat{\nu}_Y(\lambda_j)} \to \mathcal{N}(\rho_{XY}(\lambda_j), \Sigma)$$

where $\hat{\nu}_X^2(\lambda_j) = var(\mathbf{W}_j)/2\lambda_j$ is the wavelet variance for the time serie **X**.

Scale	1	2	3	4	5	6
Hz	0.23-0.45	0.11-0.23	0.06-0.11	0.03-0.06	0.01-0.03	0.007-0.01
Mean cor.	0.12	0.21	0.39	0.45	0.44	0.41

fMRI data : (2048 points in the time series)

Wavelets and correlation : fMRI examples

Construction of the adjacency matrices

 \rightarrow pair-wise inter-regional correlations

- Wavelets MODWT
- Connectivity = Correlation

 \rightarrow adjacency matrix Threshold ?

 \rightarrow Undirected graphs : small-world properties

Construction of the adjacency matrices

Hypothesis tests: for all $i, j, 1 \le i, j \le 90, i \ne j$

$$\mathcal{H}_0: P(\rho_{i,j} \leq R) \qquad \mathcal{H}_1: P(\rho_{i,j} > R)$$

Problems :

- Multiple hypotheses tests : 4005 tests
 - \rightarrow Application of the False Discovery Rate [Benjamini et al. 01]
- Choice of threshold *R*:
 - $\rightarrow \text{Free parameter}$
 - \rightarrow No rationale for its choice
 - \rightarrow Need to compare graphs with same number of edges
 - \rightarrow Maximise interesting properties

Number of errors committed when testing 4005 null hypothesis n_0 = number of true null hypotheses

	Not rejected	Rejected	Total
True null hypotheses	U	V	<i>n</i> ₀
Non-true null hypotheses	Т	S	$4005 - n_0$
	4005 – W	W	4005

Multiple hypotheses tests

Number of errors committed when testing 4005 null hypothesis n_0 = number of true null hypotheses

	Not rejected	Rejected	Total
True null hypotheses	U	V	<i>n</i> 0
Non-true null hypotheses	Т	S	$4005 - n_0$
	4005 – W	W	4005

- PCER = E(V/4005), less than α if each tests control at level α.
 → do not take into account the multiple test.
- FWER = P(V ≥ 1), less than α if each tests control at level α/4005.
 → Problem when the number of hypotheses is large, too conservative test.
- FDR = P(W > 0)E(V/W|W > 0), i.e. control of the proportion of rejected null hypotheses which are erronously rejected.
 - \rightarrow less stringent, and a gain in power.

Multiple hypotheses tests : FDR procedure

[Benjamini et al. 01]

 $Hypotheses: \ \mathcal{H}_1, \mathcal{H}_2, \ldots, \mathcal{H}_{4005}$

Corresponding *p*-values : $p_1, p_2, \ldots, p_{4005}$ and $p_{(1)}, p_{(2)}, \ldots, p_{(4005)}$ the ordered *p*-values. ($\mathcal{H}_{(i)}$ the null hypothesis corresponding to $p_{(i)}$)

> Let k be the largest i for which $p_{(i)} \le i\alpha/4005$ then reject all $\mathcal{H}_{(i)}$, i = 1, 2, ..., k

For independent test statistics and for any configuration of false hypotheses, the *FDR* is controled at α .

Trade-off between the number of point in time series and the number of connections to explore.

Multivariate normal sample where all but two of the p = 500 variables are mutually uncorrelated as n decreases over the range 50, 25, 10. These two variables have a correlation coefficient equal to 0.8. [Hero et al. 11]

An example using a patient with craniectomy on the left part of the brain.

- 90 regions
- 400 mostly connected pairs (without multiple corrections)

Using 405 points in time

patient

Fractal brain connectivity

An example using a patient with craniectomy on the left part of the brain.

- 90 regions
- 400 mostly connected pairs (without multiple corrections)

Using 200 points in time

patient

Sophie Achard (CNRS, Grenoble)

Fractal brain connectivity

An example using a patient with craniectomy on the left part of the brain.

- 90 regions
- 400 mostly connected pairs (without multiple corrections)

Using 70 points in time

patient

patient

- 90 regions
- 200 mostly connected pairs (without multiple corrections)
- Using 405 points in time

patient

- 90 regions
- 200 mostly connected pairs (without multiple corrections)
- Using 200 points in time

Choice of threshold in terms of scales

Here 2048 points in time. [Achard et al. 06, Achard et al. 08]

fMRI data : (2048 points in the time series)

Scale	1	2	3	4	5	6
Hz	0.23-0.45	0.11-0.23	0.06-0.11	0.03-0.06	0.01-0.03	0.007-0.01
Mean cor.	0.12	0.21	0.39	0.45	0.44	0.41

Sophie Achard (CNRS, Grenoble)

Fractal brain connectivity

27/09/2013 29 / 29